
PHYSICAL REVIEW E 67, 036618 ~2003!
Angular momentum dynamics of a paraxial beam in a uniaxial crystal

Alessandro Ciattoni*
Dipartimento di Fisica, Universita` Roma Tre, I-00146 Rome, Italy

and Istituto Nazionale di Fisica della Materia, Unita` di Roma 3, Rome, Italy

Gabriella Cincotti
Dipartimento di Elettronica Applicata, Universita` Roma Tre, I-00146 Rome, Italy

and Istituto Nazionale di Fisica della Materia, Unita` di Roma 3, Rome, Italy

Claudio Palma
Dipartimento di Fisica, Universita` Roma Tre, I-00146 Rome, Italy

and Istituto Nazionale di Fisica della Materia, Unita` di Roma 3, Rome, Italy
~Received 4 October 2002; published 25 March 2003!

The conservation law governing the dynamics of the radiation angular momentum component along the
optical axis (z axis! of a uniaxial crystal is derived from Maxwell’s equations; the existence of this law is
physically related to the rotational invariance of the crystal around the optical axis. Specializing the obtained
general expression for thez component of the angular momentum flux to the case of a paraxial beam propa-
gating along the optical axis, we find that the expression is the same as the corresponding one for a paraxial
beam propagating in an isotropic medium of refractive indexno ~ordinary refractive index of the crystal!;
besides, we show that the flux is conserved during propagation and that it decomposes into the sum of an
intrinsic and an orbital contribution. Investigating their dynamics we demonstrate that they are coupled and,
during propagation, an exchange between them exists. This exchange asymptotically exhibits a saturation
process leading, forz→`, the intrinsic part to vanish and the orbital one equates the total amount of angular
momentum flux. As an example, the evolution of the intrinsic and the orbital contributions to the flux is
investigated in the case of circularly polarized beams. Besides, the radiation angular momentum stored in the
crystal is also investigated, in the paraxial regime, showing that it is simply given by the product of the total
angular momentum flux by the time the radiation takes in passing through the crystal.

DOI: 10.1103/PhysRevE.67.036618 PACS number~s!: 42.25.Bs
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I. INTRODUCTION

Among the physical properties of the electromagne
field, probably the most relevant ones are that it carries
ergy, linear momentum, and angular momentum; gener
speaking, these are the very features allowing us to reg
the electromagnetic field as a physical reality, and not a
merely mathematical machinery set up to describe the in
action among charges. The investigation of the electrom
netic energy and momentum has played an important
since the early development of the electromagnetic the
@1–3#; besides, quantum mechanics has furnished a more
citing picture, associating at each photon an energy\v, a
linear momentum\k, and an angular momentum6\ ~de-
pending on its state of polarization! @4#.

The investigation of energy and momentum is simple
an electromagnetic field propagating in vacuum. On the c
trary, the problem of deriving the conservation laws for e
ergy, linear and angular momentum associated with a fiel
a material medium is a subtle one and it has been larg
investigated@5#. If we consider the isolated system com
posed of matter and radiation, it is evident that the to
energy, momentum, and angular momentum are conse
quantities, because of the homogeneity of the time, the
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mogeneity and isotropy of the space, respectively. In
frame of electrodynamics of continuous media, the diffic
ties arise when we try to express each conserved quantit
the sum of two contributions, one due to the matter a
another due to the radiation, resulting in a substantial am
guity in the definition of each quantity. As an example, fo
lowing the standard Minkowski approach, one obtains
expression for the Maxwell stress tensor which, for ani
tropic media, is not symmetric; this generates serious d
culties about the definition of the angular momentum den
and flux. A way of escaping from these shortcomings co
sists in resorting to a more refined treatment of the inter
tion between matter and radiation based on a statisti
mechanical approach@6#.

Notwithstanding the difficulty of defining what is mean
with angular momentum of the light propagating in an anis
tropic medium, the investigation of its behavior is expect
to be very interesting. In fact the angular momentum of
diation generally has an intrinsic part~or spin!, associated
with the polarization, and an orbital one associated with
spatial distribution@7#. When propagating in vacuum~or in
an isotropic medium! the light does not suffer a change in i
polarization state, so that its intrinsic angular momentum
constant; therefore, in spite of diffraction, the orbital part
also constant because the total angular momentum is a
served quantity. On the other hand, one of the peculiaritie
anisotropic media is the change of the state of polarization
©2003 The American Physical Society18-1
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the light, so that we expect the radiation intrinsic angu
momentum to undergo an evolution. Besides, we expect
a nontrivial dynamics in the orbital part, because of the c
pling between polarization dynamics and diffraction in a
isotropic media.

This behavior strongly encourages us to investigate
angular momentum of radiation in anisotropic media. Nev
theless, if one does not want to overcomplicate the prob
~for example, resorting to statistical mechanics!, it is essen-
tial to consider a medium exhibiting a rotational invarian
around some directions. In fact, it is well known that t
conservation of the component of the angular momen
along a direction is intimately related to the rotational inva
ance of the system around the same direction. This imp
that, if the medium is rotationally invariant around thez axis,
the z component of its angular momentum is conserved
that it cannot be coupled with thez component of the light
angular momentum; this absence of coupling establishe
clear distinction between the matter and radiation contri
tions, so that we expect to be able to precisely define thz
component of the radiation angular momentum. The o
anisotropic media possessing a rotational symmetry
uniaxial crystals and the rotational invariance is around
optical axis, so that we are led to investigate the dynamic
the component of the light angular momentum along the
tical axis.

In the present paper we derive, from macroscopic M
well’s equations, a balance equation governing the conse
tion of thez component of the angular momentum of rad
tion propagating in a uniaxial crystal, whose optical a
coincides with thez axis. The angular momentum densi
coincides with the classical one derived by Minkows
while we furnish a different expression for the flux of ang
lar momentum. The treatment is fully electromagnetic w
no approximations. Specializing to a situation closer to
tics, we consider the case of paraxial light beams propa
ing along the optical axis, whose behavior has been rece
studied@8#. The investigation of the angular momentum
paraxial beams propagating in vacuum is a subject which
attracted much research interest recently. In fact, it has b
demonstrated by Allenet al. @9,10# that paraxial Laguerre
Gaussian beams@11# carry a well-defined angular momen
tum. The expressions for the intrinsic and orbital parts of
angular momentum of a paraxial beam in vacuum have b
derived by van Enk and Nienhuis@12#.

Particularizing our general expression for the angular m
mentum flux to the case of a paraxial beam, we find that
flux is the same at every transverse section of the be
besides, we show that the expressions for the intrinsic
orbital parts are the same as those pertinent to a beam p
gating in an isotropic medium of refractive indexno ~the
ordinary refractive index!. This correspondence is physical
related to the very structure of the paraxial field and to
rotational invariance of the medium around the optical ax
In spite of this formal similarity between the isotropic an
the anisotropic case, we show that the evolution in the cry
of the intrinsic and the orbital part of the angular moment
is fundamentally different from the corresponding isotrop
one. In particular we show that the intrinsic and orbital co
03661
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tributions change during the beam propagation, their s
remaining constant. This implies that the polarizatio
diffraction dynamics of the beam in the crystal yields to
exchange of angular momentum between the intrinsic
orbital contributions. Investigating the asymptotics of th
exchange, we show that, for any beam, the intrinsic p
vanishes at infinity while the orbital part equates the to
angular momentum flux.

In order to test our predictions, we consider the case
circularly polarized beams, recently investigated@13#. This
class of beams is particularly suitable for our purposes as
demonstrate that their intrinsic part of the angular mom
tum flux is simply proportional to the difference between t
energies of the left-hand and the right-hand circular com
nent. Besides, in the case of an input left-hand circula
polarized Gaussian beam, we analytically find that the sa
ration of the exchange between the intrinsic and the orb
part exhibits a Lorentzian profile.

The beam angular momentum stored in the volume of
crystal is also considered and we find that it amounts to
total angular momentum flown through the entrance face
the crystal in a time equal to that an ordinary plane wa
takes to cover the crystal length.

II. RADIATION ANGULAR MOMENTUM ALONG THE
OPTICAL AXIS

Let us consider an arbitrary monochromatic electrom
netic field propagating in a uniaxial crystal,

E~r ,t !5Re@Ev~r !e2 ivt#,

D~r ,t !5«0« rE~r ,t !,

B~r ,t !5Re@Bv~r !e2 ivt#,

H~r ,t !5
1

m0
B~r ,t !, ~1!

whereE, D, B, andH are the electric, the electric displace
ment, the magnetic induction, and the magnetic field, resp
tively, Ev and Bv are the electric and magnetic comple
amplitudes,«0 and m0 are the dielectric and permittivity
vacuum constants, respectively, while« r is the relative di-
electric tensor given by

« r5S no
2 0 0

0 no
2 0

0 0 ne
2
D , ~2!

no and ne being the ordinary and extraordinary refractiv
indices respectively, for the frequencyv; note that the ref-
erence frame has been chosen so that the optical axis o
crystal coincides with thez axis. In the present approach w
neglect the absorbtion, so thatno and ne are real numbers
allowing the second of Eqs.~1! to hold.

The first step of our analysis consists in obtaining, fro
Maxwell’s equations, the proper expression for the com
nent along the optical axis of the angular momentum of
8-2
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field and its flux. Let us start by considering an arbitra
volumet, inside the crystal, filled by charges, described b
volume densityr and current densityJ. Because of the in-
teraction with the electromagnetic field, the charges exp
ence a total mechanical torqueM given by @14#

M5E
t
dr r 3~rE1J3B!. ~3!

Following the standard procedure, we manipulate Eq.~3! by
employing Maxwell’s equations

“•D5r,

“•B50,

“3E52
]B

]t
,

“3H5J1
]D

]t
; ~4!

substitutingr andJ from the inhomogeneous equations@the
first and the fourth of Eqs.~4!# into Eq. ~3! and rearranging
the obtained expression by means of the homogenous e
tions @the second and the third of Eqs.~4!#, we get

M1
d

dtEt
dr r 3~D3B!5E

t
dr r 3~E¹•D2D3“3E!

1E
t
dr r 3~H“•B2B3“3H!.

~5!

Since the mechanical torqueM is equal to the rate of varia
tion of the angular momentumL c of the charges (M
5dL c /dt), we are tempted to read Eq.~5! as a balance
equation for the total angular momentum and to interpret
quantity

L f5E
t
dr r 3~D3B! ~6!

as the angular momentum of the electromagnetic field sto
in the volumet. However, this is possibleif andonly if the
right-hand side~RHS! of Eq. ~5! can be transformed into
surface integral over the boundaryS5]t enclosing the vol-
ume t; only in this case Eq.~5! would equate the rate o
increasing of the total angular momentumL5L c1L f stored
in the volumet to the flux of incoming angular momentum
through the surfaceS. It is a well-known fact that for linear
isotropic media, the RHS of Eq.~5! can be expressed as
surface integral, but, for the case of linear anisotropic me
we are investigating, the situation is more involved.

Taking Eqs.~1! into account and exploiting the symmet
of the tensor« r , it is straightforward to prove that

E“•D2D3“3E1H“•B2B3“3H5“•T, ~7!
03661
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whereT is the well-known Maxwell stress tensor, given b

Ti j 5e0Ei~« rE! j1
1

m0
BiBj2

1

2 S «0E•« rE1
1

m0
B•BD d i j ,

~8!

the indicesi and j running over the number 15x, 25y, and
35z andd i j being the Kronecker delta function; the dive
gence of the tensor is defined as a vector whose compon
are given by (“•T) i5] jTi j where the convention of sum
ming over the repeated indices has been used. Note tha

T2Tt5e0~no
22ne

2!EzS 0 0 2Ex

0 0 2Ey

Ex Ey 0
D , ~9!

where the superscriptt indicates the transposition operatio
Equation~9! shows that the tensorT is not symmetric be-
causenoÞne , that is to say because of the anisotropy of t
medium. The RHS of Eq.~5! is the volume integral of the
vector r3“•T which can be rewritten as

r3“•T5“•F1g, ~10!

where the tensorF and the vectorg are defined by

Fi j 5e imnxmTn j ,

gi5e imnTmn , ~11!

and e imn is the completely antisymmetric tensor of rank
~Levi-Cività symbol!. Inserting Eqs.~6! and~10! into Eq.~5!
and exploiting the Green’s theorem to transform the volu
integral into a surface one, we obtain

d

dt
~L c1L f !5E

S
dS Fn̂1E

t
dr g, ~12!

where n̂5nxêx1nyêy1nzêz is the unit vector pointing out-
ward from the surface. Equation~12! can be interpreted a
the balance equation for the angular momentum only if
volume integral of the vectorg vanishes. In this perspective
it is crucial to inspect the explicit expression ofg which,
from the second of Eqs.~11! and Eq.~8!, is given by

g5S Tyz2Tzy

2Txz1Tzx

Txy2Tyx

D 5e0~no
22ne

2!EzS 2Ey

Ex

0
D . ~13!

This expression shows thatg, in general, does not vanish an
this is a consequence of the fact that the stress tensorT is not
symmetric or, equivalently, that the medium we are cons
ering is anisotropic. Therefore Eq.~12! does not allow us to
interpretL f and the surface integral as the angular mom
tum and the flux of angular momentum, respectively, sin
there is an additional uninterpreted contribution in the b
ance equation. However, thez component ofg vanishes be-
causeTxy5Tyx as a consequence of the rotational invarian
8-3
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CIATTONI, CINCOTTI, AND PALMA PHYSICAL REVIEW E 67, 036618 ~2003!
around thez axis of the crystal. Therefore, if we consid
only thez component of Eq.~12!, we obtain

d

dt
~Lcz1L f z!5E

S
dS~Fzxnx1Fzyny1Fzznz!, ~14!

which is an expression exhibiting the desired structu
therefore we are allowed to interpret the scalarL f z as thez
component of the angular momentum of the radiation sto
in the volumet and the surface integral in the RHS of E
~14! as the flux of angular momentum incoming through t
boundaryS.

The obtained result deserves some discussion. At a
glance, it can appear strange that we were easily abl
tackle thez component of the angular momentum and, on
contrary, not able to give a complete description of thex and
the y components. The origin of this difference is intimate
related to the rotational invariance around thez axis of the
uniaxial crystal. Propagating through the medium, the e
tromagnetic field exchanges angular momentum not o
with the chargesr but also with the crystal. The charge
contribution to the angular momentum isL c by definition,
but it is not simple to properly distinguish the contribution
the crystal from that one of the electromagnetic field, a t
requiring more refined methods based, for example, o
statistical-mechanical approach to the interaction betw
matter and radiation. The consequence of this difficulty is
appearance of the volume integral of the vectorg in the RHS
of Eq. ~12!. Therefore, in general, we are not able to give
correct definition of the angular momentum of the radiat
only within the frame of electrodynamics of macroscop
media. However, the situation we are analyzing is particu
in the sense that the crystal we are considering shows a
tational symmetry around the optical axis. It is well know
that the existence of a rotational symmetry around a direc
is related to the conservation of the projection of the angu
momentum of the system along the same direction. This
plies that the angular momentum of the crystal alongz is a
conserved quantity not mixing with the angular moment
of the light; the rotational invariance around thez axis de-
couples the contribution of the crystal and that of the fie
allowing us to correctly distinguish them.

III. ANGULAR MOMENTUM FLUX OF A PARAXIAL
BEAM PROPAGATING ALONG THE OPTICAL AXIS

The situation investigated in the above section is valid
any monochromatic electromagnetic field propagating i
uniaxial crystal. In this section, we want to apply the gene
treatment to the particular case of a paraxial beam propa
ing along the optical axis of the crystal; let us now special
Eq. ~14! to this case. The standard situation in optics is t
of light traveling in a medium without charges; this implie
that we can setLcz50. Besides, since the beam propaga
along thez axis, we are interested in the total amount of t
z component of the angular momentum of beam flow
through any planez5z0; therefore we choose the volumet
to be the stripe 0,z,z0. With these prescriptions, Eq.~14!
becomes
03661
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dt
52E d2r'Fzz~r',0,t !1E d2r'Fzz~r' ,z0 ,t !,

~15!

wherer'5xêx1yêy , d2r'5dxdy, and the integrals are ex
tended over the whole transverse planes; note that we h
neglected the contributions to the integral coming from
surface at infinity since the paraxial beam is always a tra
verse localized entity and it rapidly vanishes forur'u→`.
The field we are investigating is monochromatic so th
rather than considering the instantaneous value of the flu
angular momentum it is more convenient to investigate
correspondent time average. In this perspective, we take
time average of Eq.~15!, that is to say,

K dLf z

dt L 52E d2r'^Fzz~r',0,t !&1E d2r'^Fzz~r' ,z0 ,t !&,

~16!

where the time averagêf & of any quantityf (t) is defined as

^ f &5
1

TI
E

2TI /2

TI /2

dt f~ t ! ~17!

and TI is an integration time much greater than the per
2p/v of the radiation. Since the time average of a tim
derivative vanishes, we get, from Eq.~16! and from the ar-
bitrariness ofz0, the relation

dF~z!

dz
50, ~18!

where we defined

F~z!52E d2r'^Fzz~r' ,z,t !&. ~19!

F(z) has the physical meaning of the time-averaged flux
thez component of the angular momentum of the beam flo
ing through any fixedz plane from left to right. Equation
~18! expresses the conservation of thez component of the
angular momentum. Note that the presence of the minus
in the definition ofF(z) is conventional and it is due to th
fact that the integral of̂ Fzz& represents a flux of angula
momentum flowing from right to left, while we find mor
familiar to think that the beam propagates from left to rig

To go further, we have now to compute the time avera
^Fzz&,

^Fzz&5^2yTxz1xTyz&52yS «0ne
2^ExEz&1

1

m0
^BxBz& D

1xS «0ne
2^EyEz&1

1

m0
^ByBz& D , ~20!

where use has been made of the first of Eqs.~11! and of Eq.
~8!. The time average of the product of two monochroma
fields is easily given by the half of the real part of the pro
8-4
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uct between the complex amplitude of one of them and
conjugate of the complex amplitude of the other; theref
Eq. ~20! becomes

^Fzz&5
1

2
Re@«0ne

2~2yEvx1xEvy!Evz* #

1
1

2
ReF 1

m0
~2yBvx1xBvy!Bvz* G , ~21!

where Ev and Bv are the electric and magnetic comple
amplitudes defined in Eqs.~1!. Using Maxwell’s equations of
Eqs. ~4! ~where we setr50 andJ50) and Eqs.~1!, it is
easy to prove that

Bvz5
1

iv S ]Evy

]x
2

]Evx

]y D ,

Evz5
i

v«0m0ne
2 S ]Bvy

]x
2

]Bvx

]y D . ~22!

Inserting Eqs.~22! into Eq. ~21! we succeed in eliminating
the longitudinal components of the electromagnetic fie
thus obtaining

^Fzz&5
1

2vm0
ReF1

i
~2yEvx1xEvy!S ]Bvy*

]x
2

]Bvx*

]y D G
1

1

2vm0
ReF i ~2yBvx1xBvy!S ]Evy*

]x
2

]Evx*

]y D G .
~23!

Up to now, all the expressions we have considered are e
and valid for any monochromatic field. Let us now restr
our attention to the set of paraxial beams~propagating along
thez axis!, for which the transverse size is much greater th
the wavelength. These kind of fields have been extensiv
investigated@8,15–18# and the complex amplitude of th
electric field can be expressed as@8#

Ev~r' ,z!.eik0nozA'~r' ,z!, ~24!

where k05v/c and the fieldA'5Axêx1Ayêy is a slowly
varying transverse amplitude. From the third Maxwel
equation we obtain the transverse components of the m
netic induction field, that is to say

Bvx~r' ,z!.2
k0no

v
eik0nozAy~r' ,z!,

Bvy~r' ,z!.
k0no

v
eik0nozAx~r' ,z!, ~25!

where we have neglected the transverse derivative ofEvz
since the longitudinal component is much smaller than
transverse partEv' , in paraxial regime. Substituting Eqs
~24! and ~25! into Eq. ~23!, we get
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^Fzz&5
k0no

2v2m0

ReF1

i
~2yAx1xAy!S ]Ax*

]x
1

]Ay*

]y D
1 i ~yAy1xAx!S ]Ay*

]x
2

]Ax*

]y D G . ~26!

Note that this expression relates, the average density cu
of z component of the angular momentum of the beam o
to its slowly varying amplitudeA' . Substituting Eq.~26!
into Eq.~19! we obtain, after some manipulations~see Sec. 1
of the Appendix!,

F~z!5no

«0c

2v F i E d2r'~AxAy* 2Ax* Ay!

1
1

i E d2r'Ax* S x
]

]y
2y

]

]xDAx1
1

i E d2r'Ay*

3S x
]

]y
2y

]

]xDAyG . ~27!

This equation constitutes one of the main results of
present paper. It is interesting to note that this express
coincides with that one valid for a paraxial beam propagat
in a homogeneous isotropic medium with refractive indexno
@7,12#. The physical interpretation of this intriguing coinc
dence is related to the very structure of a paraxial field a
again, to the rotational invariance around thez axis. A
paraxial beam propagating in an isotropic medium can
thought of as a superposition of plane waves whose w
vectors slightly differ from the main one that gives the ma
direction of propagation, say thez axis. This implies that the
beam can be expressed asEv5exp(ik0nz)A' wheren is the
refractive index andA' is a slowly varying amplitude; the
field is then a plane wave carrier modulated by an envelo
A paraxial beam propagating in a uniaxial crystal is also
superposition of plane waves whose wave vectors are ne
parallel to a main direction, sayŝ, but, due to the existence o
two different kinds of plane waves~the ordinary and extraor
dinary waves!, in a given direction there are two main wav
vectors. This implies that the field can be expressed asEv

5exp@ik0no(ŝ)z#A'o1exp@ik0ne(ŝ)z#A'e , where no( ŝ) and
ne( ŝ) are the ordinary and extraordinary refractive indic
for the directionŝ. Therefore, the beam in the isotropic m
dium and that in the uniaxial crystal show, in general, diffe
ent structures and consequently no simple relation can e
between their angular momenta. However, for a beam pro
gating along the optical axis, the situation is very particu
since in this caseŝ5êz and, due to the rotational invarianc
around thez axis we haveno(êz)5ne(êz)5no , that is to say
the two carriers share a common wave vector, experienc
the same refractive indexno ; this allows us to express th
field as in Eq.~24!. Therefore, the beam along the optic
axis exhibits the same structure of a beam propagating in
isotropic medium of refractive indexno . The coincidence of
the expressions for the flux of thez component of the angula
momentum in an isotropic medium and in the crystal follo
8-5
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CIATTONI, CINCOTTI, AND PALMA PHYSICAL REVIEW E 67, 036618 ~2003!
immediately by observing that Eq.~23! ~which is exact! does
not depend on the refractive indices and consequentl
holds for both an isotropic medium and the uniaxial crys

Another interesting property of Eq.~27!, which has been
pointed out in the case of isotropic media@7,12#, is retrieved
by noting that the fluxF can be expressed as

F~z!5F I~z!1FO~z!, ~28!

having set

F I~z!5 igE d2r'A'
† S 0 21

1 0 DA' ,

FO~z!5
g

i E d2r'A'
† S x

]

]y
2y

]

]xDA' , ~29!

where the superscript † indicates the Hermitian conjuga
operation and we defined for convenience

g5no

«0c

2v
. ~30!

From Eq.~28! we observe that the flux of the angular m
mentum is the sum of two contributions,F I andFO which
are commonly called the intrinsic~or spin! and the orbital
part, respectively, of the angular momentum. The first on
mainly related to the state of polarization of the field where
the second is essentially related to the shape of the field

IV. EVOLUTION OF THE INTRINSIC AND ORBITAL
ANGULAR MOMENTUM FLUXES

In the above section, we have demonstrated that the
pressions for the angular momentum fluxF of a paraxial
beam propagating in a uniaxial crystal~along the optical
axis! and in an isotropic medium are the same. The m
common features are that the flux is conserved@see Eq.~18!#
and that it is given by the sum of the intrinsic and the orb
contributions,F I andFO , respectively. However, the propa
gation of a beam in a uniaxial crystal shows some uniq
features, absent in the isotropic counterpart, the most
evant being the change of the polarization state. We w
now to investigate how this effect affects the dynamics ofF I
andFO .

The expression for a generic paraxial beam propaga
along the optical axis of a uniaxial crystal has been dedu
in Ref. @8# and it is shown there that its slowly varying am
plitude @as defined in Eq.~24!# is given by

A'~r' ,z!5E d2k'eik'•r'@e2( iz/2k0no)k'
2
P̂o

1e2( inoz/2k0ne
2)k'

2
P̂e#Ã'~k'!, ~31!

where

P̂o5
1

k'
2 S ky

2 2kxky

2kxky kx
2 D , P̂e5

1

k'
2 S kx

2 kxky

kxky ky
2 D ,

~32!
03661
it
l.

n

is
s

x-

n

l

e
l-

nt

g
d

k'5kxêx1kyêy andd2k'5dkxdky . In Eq.~31!, the fieldÃ'

is related to the boundary distribution of the electric field
means of the relation

Ã'~k'!5
1

~2p!2E d2r'e2 ik'•r'E'~r',0!, ~33!

which is a standard two-dimensional Fourier transform.
order to study the dynamics ofF I andFO , we substitute the
field of Eq. ~31! into Eqs. ~29! and we obtain, after some
algebra~see Sec. 2 of the Appendix!,

F I~z!5 ig~2p!2E d2k'Ã'
† @e( iDz/2k0no)k'

2
Q̂o

1e2( iDz/2k0no)k'
2
Q̂e#Ã' ,

FO~z!52 ig~2p!2E d2k'Ã'
† @e( iDz/2k0no)k'

2
Q̂o

1e2( iDz/2k0no)k'
2
Q̂e#Ã'

1 ig~2p!2E d2k'Ã'
† F S 1 0

0 1D S ky

]

]kx
2kx

]

]ky
D

1S 0 21

1 0 D G Ã' , ~34!

where we have setD5no
2/ne

221 and we have introduced th
matrices

Q̂o5
1

k'
2 S kxky 2kx

2

ky
2 2kxky

D , Q̂e5
1

k'
2 S 2kxky 2ky

2

kx
2 kxky

D .

~35!

Equations~34! constitute the main result of the present pap
and they deserve a special discussion. The first striking ef
emerging from these equations is thatF I andFO depend on
z so that they are not conserved quantities; at the same t
their sumF5F I1FO does not depend onz, in unavoidable
agreement with Eq.~18!, expressing the conservation of th
total angular momentum flux. Therefore, the dynamics ofF I
and FO presents an exchange of angular momentum fl
between the intrinsic and the orbital contributions. It is wo
noting that this exchange is fundamentally mediated by
anisotropy, since in an isotropic medium the intrinsic and
orbital contributions are separately conserved quantit
note that this well-known fact concerning isotropic med
can be easily retrieved from Eqs.~34! simply putting no
5ne or, equivalentlyD50.

From a physical point of view, the exchange of angu
momentum between the two contributions is easily und
stood by taking into account the change of the state of
larization of a beam traveling through the crystal. The m
consequence of this polarization dynamics on the ang
momentum is that the intrinsic partF I generally changes
because of its dependence on the polarization state. Sinc
8-6
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ANGULAR MOMENTUM DYNAMICS OF A PARAXIA L . . . PHYSICAL REVIEW E 67, 036618 ~2003!
total angular momentum flux is a conserved quantity,
evolution of F I corresponds to that ofFO , explaining the
origin of the exchange.

In order to mathematically describe this exchange of
gular momentum flux, note that, putting,z50 into Eqs.~34!,
we get

F I~0!5 ig~2p!2E d2k'Ã'
† S 0 21

1 0 D Ã' ,

FO~0!5 ig~2p!2E d2k'Ã'
† S ky

]

]kx
2kx

]

]ky
D Ã' ~36!

relating the boundary values ofF I and FO directly to the
spectrumÃ' . Comparing Eqs.~34! and ~36!, it is straight-
forward to see that

F I~z!5F I~0!2DF~z!,

FO~z!5FO~0!1DF~z!, ~37!

where we defined

DF~z!5 ig~2p!2E d2k'Ã'
† F S 0 21

1 0 D 2e( iDz/2k0no)k'
2
Q̂o

2e2( iDz/2k0no)k'
2
Q̂eG Ã' . ~38!

Equations~37! describe the exchange of angular moment
flux in a particularly transparent way. We recognize
DF(z) the amount of angular momentum flux which, afte
distancez, the intrinsic componentF I has transferred to the
orbital oneFO . Note that in the isotropic limit~i.e., D50)
DF uniformly vanishes, expressing again the absence of
gular momentum flux exchange in isotropic media.

Because of the presence ofÃ' in the expression forDF
of Eq. ~38!, the evolution of the angular momentum flux
cannot be characterized in general, since it is strongly dep
dent on the beam shape. However, there is a particular
ture of the angular momenta dynamics which is the same
any beam traveling through the crystal and it is related to
asymptotics of the exchange. In order to discuss this po
note that ifz is very large, the integral of Eq.~38! contains
two highly oscillatory functions so that their contributions
the integral are expected to be very small; it is possible
prove that forz→` their contributions exactly vanish so th

lim
z→`

DF~z!5 ig~2p!2E d2k'Ã'
† S 0 21

1 0 D Ã' . ~39!

Note that, because this limit always exists, we find a satu
tion process in the evolution of the angular momentum flu
analogous to that one of the energy dynamics of thex andy
components of the beam discussed in Ref.@19#. Comparing
Eq. ~39! with the first of Eqs.~36!, we conclude that

lim
z→`

DF~z!5F I~0!. ~40!
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This is an interesting result since we have demonstrated
the asymptotical amount of the angular momentum fl
flowing from the intrinsic contribution to the orbital one co
incides with the boundary value of the intrinsic contributio
Computing the limit forz→` in Eqs. ~37! and exploiting
Eq. ~40!, we finally obtain

lim
z→`

F I~z!50,

lim
z→`

FO~z!5F I~0!1FO~0!5F, ~41!

revealing, for these two quantities, a very interesting kind
saturation. Asymptotically, the intrinsic angular momentu
flux vanishes whereas the orbital one equates the t
amount of angular momentum flux carried by the beam.

V. CIRCULARLY POLARIZED BEAMS

The above considerations are very general and it is d
cult to discuss the details of the angular momenta evolu
because of the involved dynamics of the polarization sta
However, in the particular and interesting case of circula
polarized beams, the analysis can be generally further de
oped. In order to investigate the angular momentum dyna
ics of this kind of beams, we introduce the fields

S A1

A2
D 5

1

A2
S 1 2 i

1 i D S Ax

Ay
D , ~42!

which are the standard left-hand and right-hand circula
polarized components of the field. The propagation of cir
larly polarized beams have been recently investigated@13#
and it has been shown that they undergo an interesting
havior concerning the coupling among the vortex comp
nents of each circular component. Substituting Eq.~42! into
Eqs. ~29! and using polar coordinates (x5r cosw and y
5r sinw) inside the integral, we obtain

F I~z!5gE
0

`

dr r E
0

2p

dw~ uA1u22uA2u2!,

FO~z!5
g

i E0

`

dr r E
0

2p

dwS A1*
]A1

]w
1A2*

]A2

]w D . ~43!

From the first of Eq.~43!, we note that the intrinsic contri
bution to the angular momentum is proportional to the d
ference between the energies of left-hand and the right-h
circular components of the beam; the second of Eq.~43!
shows that the orbital contribution to the angular moment
is highly related to the dependence of the field compone
on the polar anglew. The saturation process ofF I outlined
in the above section can now be conveniently reinterpre
by means of Eqs.~43!. The first of Eqs.~41! and the first of
Eqs.~43! allow us to state that the intrinsic contributions
the angular momentum due toA1 and toA2 are, asymptoti-
cally, equal with opposite sign; this is equivalent to sayi
that the asymptotical values of the energies ofA1 and A2

coincide.
8-7
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In Ref. @13#, the authors considered the particular case
a beam which, on the planez50, is purely left-hand circu-
larly polarized and exhibits circular symmetry, that is to s

E1~r ,w,0!5E~r !,

E2~r ,w,0!50. ~44!

It is interesting to investigate the evolution of the angu
momenta for this beam since, forz50, its orbital contribu-
tion vanishes,FO(0)50 @see the second of Eqs.~43!#,
whereas its intrinsic contribution is proportional to the e
ergy of the beam@see the first of Eqs.~43!#. In Ref.@13#, it is
shown that

A1~r ,z!5pE
0

`

dk k@e2( iz/2k0no)k2

1e2( inoz/2k0ne
2)k2

#J0~kr !Ẽ~k!,

A2~r ,w,z!5pei2wE
0

`

dk k@e2( iz/2k0no)k2

2e2( inoz/2k0ne
2)k2

#J2~kr !Ẽ~k!, ~45!

whereJn is the Bessel function of first kind of ordern and

Ẽ~k!5
1

2pE0

`

dr rJ0~kr !E~r !. ~46!

Equations~45! show that the left-hand circular compone
A1 keeps its circular symmetry in propagation, while t
right-hand circular componentA2 grows and it carries a to
pological charge 2, since it depends onw only by means of
the factor exp(i2w). Substituting Eqs.~45! into Eqs.~43!, we
obtain

F I~z!5g@W1~z!2W2~z!#,

FO~z!52gW2~z!, ~47!

where we have defined the optical powers

W6~z!5E
0

`

dr r E
0

2p

dwuA6~r ,w,z!u2. ~48!

From Eqs.~47! we note that the orbital contribution to th
angular momentum depends only on the right-hand com
nent and that it grows, while the intrinsic contribution dimi
ishes. Note also that, in this particular case, the total ang
momentum

F~z!5F I~z!1FO~z!5g@W1~z!1W2~z!# ~49!

is proportional to the total energy of the beam which is
constant because the crystal is lossless.

The particular case of a Gaussian beam

E~r !5E0e2r 2/2s, ~50!
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with spot sizes, admits an analytical treatment, and we ha
~see Ref.@13#!

W6~z!5
1

2
W1~0!F 16

1

11S z

L D 2G , ~51!

where L52k0nos2/D. Substituting Eq.~51! into Eqs. ~47!
and noting thatF I(0)5gW1(0), westraightforwardly get

F I~z!5F I~0!F 1

11S z

L D 2G ,

FO~z!5F I~0!F 12
1

11S z

L D 2G ~52!

exhibiting a Lorentzian saturation; in Fig. 1, the plots of Eq
~52! are reported.

VI. VOLUME ANGULAR MOMENTUM

For the sake of completeness, we now investigate
amount ofz component of the angular momentum of th
radiation stored in the crystal that, in the first section of t
present paper, we showed to be given byL f z5êz•L f . In
order to obtain the expression corresponding to a para
beam, we consider thez component of Eq.~6!,

L f z5«0E
t
dr @2no

2~xEx1yEy!Bz1ne
2~xBx1yBy!Ez!],

~53!

where the second of Eqs.~1! has been taken into account;
this equation,t is the volume filled by the crystal. Also in
this case, we are interested in the time average ofL f z that is
given by

^L f z&5
«0

2
ReE

t
dr @2no

2~xEvx1yEvy!Bvz*

1ne
2~xBvx1yBvy!Evz* #, ~54!

FIG. 1. Plots ofF I(z)/F I(0) andFO(z)/F I(0) of a Gaussian
beam vs the normalized propagation distancez/L.
8-8
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ANGULAR MOMENTUM DYNAMICS OF A PARAXIA L . . . PHYSICAL REVIEW E 67, 036618 ~2003!
where use has been made of the rule for obtaining the t
average of the product of two monochromatic quantities
order to handle this expression, we follow the same pro
dure used for the angular momentum flux. Inserting Eqs.~22!
into Eq. ~54! we eliminate the longitudinal components
the field; subsequently, using Eqs.~24! and~25! for describ-
ing a paraxial beam, we obtain

^L f z&52
«0no

2

2v
ReE

t
dr F1

i
~2yAx1xAy!S ]Ax*

]x
1

]Ay*

]y D
1 i ~yAy1xAx!S ]Ay*

]x
2

]Ax*

]y D G . ~55!

Comparing Eq.~55! with Eq. ~26!, we note that

^L f z&52
no

c Et
dr ^Fzz&, ~56!

which is a relevant expression relating, in paraxial regim
the radiation angular momentum stored in the crystal to
flux. If we model the crystal as the slab between the pla
z50 andz5D, D being the length of the crystal, the inte
grals overr' and that overz can be splitted so that

^L f z&52
no

c E0

D

dzE d2r'^Fzz&5
no

c E0

D

dzF~z!, ~57!

where use has been made of Eq.~19! to introduce the fluxF.
Taking Eq.~18! into account~conservation of the total flux
F), Eq. ~57! readily yields

^L f z&5
noD

c
F, ~58!

which is the simpler expression we can obtain relating
angular momentum and its flux. Note thatnoD/c is the time
that an ordinary plane wave takes to go fromz50 to z
5D; therefore Eq.~58! admits a simple physical interpreta
tion regarding the volume angular momentum^L f z& as the
amount of angular momentum flown throughz50 during the
time spent by the radiation to pass through the crystal.
fact that Eq.~58! containsno only ~and notne) is related to
the structure of the paraxial field traveling along the opti
axis of the crystal and, more specifically, to its main pla
wave ~with wave vectork0noêz) whose velocity isn0 /c.

VII. CONCLUSIONS

We have discussed the conservation of optical ang
momentum in a uniaxial crystal, demonstrating that a b
ance equation can be derived only for the component of
radiation angular momentum along the optical axis, say thz
axis; besides, we have pointed out that this situation is i
mately related to the rotational invariance of the crys
around its unique optical axis. Consequently, we have
nished the proper expressions for thez component of angula
momentum and the angular momentum flux of the radiat
propagating in the crystal. We have specialized these gen
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expressions to the case of a paraxial beam propagating a
the optical axis and have demonstrated that the radiation
gular momentum in the crystal has the same expressio
the isotropic counterpart. In particular, the distinction b
tween the intrinsic and the orbital parts of the angular m
mentum flux is the same as that existing for a beam pro
gating in a isotropic medium. Investigating thez evolution of
these quantities, we have found that the dynamics of
intrinsic and orbital contributions reveals the existence of
exchange between them, a noticeable feature which is c
pletely absent in the isotropic case. It is also interesting
note that this exchange saturates forz→` and we have pre-
dicted the asymptotical values of the two contributions:
intrinsic part asymptotically vanishes whereas the orbital p
equates the total amount of the angular momentum flux.
an example, we have investigated the two angular mom
tum fluxes dynamics in the case of circularly polariz
beams. For these beams, the intrinsic part of the ang
momentum flux is simply proportional to the difference b
tween the energies of the left-hand and the right-hand cir
larly polarized components. This fact simplifies the inves
gation of the evolution of the angular fluxes. We have a
evaluated the amount of the beam’s angular momen
stored in the crystal and we have demonstrated that i
given by the total angular momentum flux multiplied by th
time an ordinary plane wave takes to pass through
crystal.

APPENDIX

1. Derivation of Eq. „27…

Equation~26! can be conveniently rewritten as

^Fzz&5no

«0c

2v
ReF ixS Ax

]Ay*

]x
2Ay

]Ax*

]x D
1 iy S Ax

]Ay*

]y
2Ay

]Ax*

]y D 1 iAxS y
]

]x
2x

]

]yDAx*

1 iAyS y
]

]x
2x

]

]yDAy* G , ~A1!

where use has been made of the relationk0 /(2v2m0)
5«0c/(2v). In order to handle this expression we resort
the identity~easily deduced with some algebra!

ReF ixS Ax

]Ay*

]x
2Ay

]Ax*

]x D 1 iy S Ax

]Ay*

]y
2Ay

]Ax*

]y D G
5

1

i
~AxAy* 2Ax* Ay!1“'•U' , ~A2!

where we introduced the transverse vectorU'

5Im(Ax* Ay)(xêx1yêy). Combining Eqs.~A2! and ~A1! we
obtain
8-9
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^Fzz&5no

«0c

2v H 1

i
~AxAy* 2Ax* Ay!1ReF iAxS y

]

]x
2x

]

]yDAx*

1 iAyS y
]

]x
2x

]

]yDAy* G1“'•U'J , ~A3!

which, inserted into Eq.~19!, yields

F~z!5no

«0c

2v F E d2r' i ~AxAy* 2Ax* Ay!

2ReE d2r' iAxS y
]

]x
2x

]

]yDAx*

2ReE d2r' iAyS y
]

]x
2x

]

]yDAy* G . ~A4!

Note that we have dropped the term“'•U' of Eq. ~A3!,
since its integral over the whole transverse plane vanis
because of the Green’s theorem and the fact that the
vanishes at infinity. It is simple to show that the second a
third integrals of Eq.~A4! are real quantities so that we ca
drop Re symbol. After integrating by parts these two in
grals, Eq.~27! is obtained.

2. Derivation of Eqs. „34…

The paraxial field in Eq.~31! can be expressed as

A'~r' ,z!5E d2k'eik'•r'ã'~k' ,z!, ~A5!

where

ã'5@e2( iz/2k0no)k'
2
P̂o1e2( inoz/2k0ne

2)k'
2
P̂e#Ã' . ~A6!
-
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e
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Inserting Eq.~A5! into Eqs.~29! and exploiting some prop
erties of the Fourier integral~generalized Parseval theorem!
we obtain, after some algebra,

F I5 ig~2p!2E d2k'ã'
† S 0 21

1 0 D ã' ,

FO5 ig~2p!2E d2k'Fkx

]ã'
†

]ky
ã'2ky

]ã'
†

]kx
ã'G . ~A7!

Substituiting Eq.~A6! into the first of Eqs.~A7! and exploit-
ing the propertiesP̂o

25 P̂o , P̂e
25 P̂e , andP̂oP̂e5 P̂eP̂o50 of

the projectors, the first of Eqs.~34! is easily obtained. In
order to handle the second of Eqs.~A7!, we use the relations

kyS ] P̂o

]kx
P̂o1

] P̂e

]kx
P̂eD 5

1

k'
2 S 0 ky

2

2ky
2 0

D ,

kxS ] P̂o

]ky
P̂o1

] P̂e

]ky
P̂eD 5

1

k'
2 S 0 2kx

2

kx
2 0

D ,

kx

] P̂e

]ky
P̂o2ky

] P̂e

]kx
P̂o52Q̂o ,

kx

] P̂o

]ky
P̂e2ky

] P̂o

]kx
P̂e52Q̂e . ~A8!

Substituting Eq.~A6! into the second of Eqs.~A7! and taking
Eqs. ~A8! into account, the second of Eqs.~34! is obtained
after some tedious but straightforward algebra.
c-
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